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ABSTRACT: With yearly economic losses estimated at billions of dollars, post-harvest losses
from insect pest infestations in stored grains pose a serious threat to global food security.
Visual examination, trapping methods, and chemical analysis are the mainstays of traditional
pest detection methods in grain storage facilities. These approaches are often labour-intensive,
time-consuming, and may not identify infestations in their early stages. A possible non-
destructive, quick, and affordable substitute for detecting, identifying, and tracking grain pest
infestations is electronic nose (e-nose) technology. Examining the fundamental ideas, sensor
technology, pattern recognition algorithms, and field applications, this review summarises
recent studies on e-nose uses in agricultural grain pest control. We examine the performance
attributes of several e-nose systems, talk about their drawbacks and restrictions, and provide
suggestions for future lines of inquiry. Sitophilus species, Rhyzopertha dominica, Tribolium
species, and Oryzaephilus surinamensis are among the major grain storage pests covered in the
review. It emphasises how electronic nose technology can be used to detect volatile organic
compounds (VOCs) released by these pests and damaged grains. Some methods may identify
infestations at population densities as low as 1-5 insects per kilogramme of grain, according to
current research, which shows detection accuracies for a variety of pest species ranging from
80-95%. For broad commercial usage, however, issues with standardisation, environmental
interference, and long-term sensor stability still need to be resolved.

Keywords: Electronic nose, grain storage, pest detection, volatile organic compounds, pattern
recognition, food security.

INTRODUCTION In grain storage facilities, visual examination,
pitfall traps, probe traps, and chemical residue
analysis are the mainstays of traditional pest
detection techniques. Despite being the norm for
many years, these techniques have built-in
drawbacks that reduce their usefulness in
contemporary grain storage operations. Visual
examination is subjective, time-consuming, and
often misses early-stage infestations when
remediation would be most successful. It also
needs skilled staff (Trematerra & Sciarretta 2004).
Although trapping techniques are helpful for
monitoring, they are not very good for early
warning systems since they usually discover pests
only after populations have developed (Toews et
al., 2006). Despite their accuracy, chemical

Population increase, climate change, and post-
harvest losses are all putting increasing strain on
global food security, and one of the biggest
problems in the food supply chain is insect
infestations in stored grains. According to the
Food and Agriculture Organisation (FAO), insect
pest-related post-harvest losses make up 10-40%
of the world's grain output, resulting in yearly
losses of more than $5 billion (Phillips & Throne,
2010). Although industrialised nations also have
significant difficulties in preserving grain quality
during storage, these losses are more severe in
poor nations due to a lack of storage facilities and
pest control skills (Hagstrum & Subramanyam
2006).
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analysis techniques are not feasible for regular
monitoring applications because they need
laboratory space, skilled staff, and a substantial
amount of time for sample preparation and
analysis (White et al., 1990).

Grain pest monitoring and detection have
undergone a paradigm change with the advent of
electronic nose (e-nose) technology. By detecting
and identifying volatile organic compounds (VOCSs)
in the air space above samples, electronic noses
are analytical tools that are intended to replicate
the human olfactory system (Gardner & Bartlett
1994). According to Paolesse et al. (2006), the
basic idea behind e-nose applications in grain pest
detection is that grains afflicted with insects
release distinct patterns of volatile chemicals that
are different from those produced by uninfested
grains. According to Chambers et al. (2013),
these volatiles include molecules released from
damaged grain kernels, metabolites produced by
the insects themselves, and secondary
metabolites from fungal contamination, which
often coexists with insect infestations.

E-nose technology has a lot of potential benefits
for detecting grain pests. Electronic noses are
appropriate for continuous monitoring applications
because they provide quick, non-destructive
examination with little sample preparation needed
(Pearce et al., 2003). Unlike conventional
techniques, the technology may be able to identify
infestations at lower population densities, allowing
for earlier intervention and a decrease in the
requirement for chemical treatments (Wilson &
Baietto 2009). Grain handling operations may
also benefit from the automation and integration of
e-nose systems, which lowers labour costs and
produces quantifiable, objective findings that are
less reliant on operator skill (Turner & Magan
2004).

Nevertheless, there are particular difficulties in
using e-nose technology for grain pest
identification. Variable temperature, humidity, and
airflow conditions are characteristics of grain
storage settings that might impact volatile
emission patterns and insect metabolism
(Paolesse et al.,, 2006). Sophisticated pattern
recognition algorithms and reliable sensor systems
are required to handle the complex analytical
challenges posed by the presence of numerous
pest species, different grain types and conditions,
and possible interference from other sources of
volatiles in storage facilities (Wilson & Baietto
2011).

With the advances in recent technologies, Smart
farming allows to utilize Internet of things (IoT) to
assist the farmers for reducing the wastages and
improving the productivity (Sindhu and Indirani
2020). Sensors, drones, and precision farming
software especially artificial intelligence and
machine learning are rapidly being used in
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agriculture to increase efficiency, production, and
sustainability (Lingireddy et al., 2023).

Zero Budget Natural Farming (ZBNF) is a
technique for chemical-free agriculture that is
based on traditions from ancient India
(Mohammed Ghouse et al., 2025).

This study offers a thorough examination of recent
studies on the use of electronic noses for
agricultural grain pest identification, monitoring,
and detection. We look at the scientific
underpinnings of these applications, assess how
well different e-nose systems and sensor
technologies work, study data processing and
pattern recognition strategies, and talk about real-
world implementation issues for commercial grain
storage operations. Along with discussing present
restrictions and difficulties, the paper offers
suggestions for future lines of inquiry that can

improve the efficiency and use of e-nose
technology in grain pest control.

PRINCIPLES OF ELECTRONIC NOSE
TECHNOLOGY FOR PEST DETECTION

Using arrays of chemical sensors and
sophisticated  signal processing algorithms,

electronic nose systems replicate the function of
biological olfactory systems by operating on the
basis of pattern recognition of volatile organic
compound signatures (Gardner & Bartlett 1994).
The basic idea behind e-nose applications in grain
pest identification is that, by using multivariate
analysis of sensor responses, insect-infested
grains may be identified from uninfested samples
by their distinctive patterns of volatile chemicals
(Paolesse et al., 2006; Sri et al., 2021; Kumar
2023; Bais et al., 2023; Prashanth Kumar 2023;
Saleem et al., 2021).

The grain-pest ecology has a variety of sources for
the volatile organic molecules that are important
for detecting grain pests. Direct metabolites
generated by insect pests during eating, breathing,
and reproduction are examples of primary sources
(Chambers et al., 2013). As they feed grain
endosperm and mature, Sitophilus species—also
referred to as grain weevils—produce unique
patterns of aldehydes, alcohols, and esters
(Phillips et al., 1993). Because of their feeding
habits and the mechanical harm they inflict on
grain kernels, Rhyzopertha dominica (lesser grain
borer) infestations are characterised by the
formation of certain terpene chemicals and
oxidised fatty acid derivatives (Germinara et al.,
2007).

Compounds emitted from damaged grain kernels
as a consequence of insect feeding activities are
examples of secondary volatile sources. According
to Chambers et al. (2013), chewing insects create
mechanical damage that wupsets cellular
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architecture and enzymatic functions, causing
previously compartmentalised chemicals to leak
out and new volatiles to arise via oxidation and
degradation processes. Even while insect-specific
metabolites may be present in trace amounts,
these damage-associated volatiles often contain
lipid oxidation products as hexanal, pentanal, and
different ketones, which act as indirect markers of
pest presence (White et al., 1995).

Compounds generated by fungal contamination,
which often coexists with insect infestations, are
classified as tertiary volatile sources. Many stored
grain pests promote circumstances conducive for
fungal development by the entrance of moisture
and the production of micro-wounds in grain
kernels (Sinha & Muir, 1973). Additional indicators
of storage degradation linked to pest activity may
be found in the distinctive patterns of alcohols,
ketones, and sesquiterpenes produced by fungi
such Aspergillus and Penicillium species (Magan
& Evans 2000).

The concentration and volatility of target chemicals
in the headspace above grain samples have a
significant impact on the e-nose systems'
sensitivity of detection. Temperature, humidity,
feeding activity, grain type and condition,
developmental stage, and pest population density
are some of the variables that affect volatile
emission rates (Wilson & Baietto 2009). Early-
stage  infestations may  produce lower
concentrations of target compounds but may also
display more specific chemical signatures because
secondary effects are less complex, according to
research showing that volatile emission patterns
change dynamically as infestations progress
(Chambers et al., 2013).

An essential part of efficient e-nose systems for
grain pest detection is sensor array design. Metal
oxide  semiconductors (MOS), conducting
polymers, quartz crystal microbalances (QCM),
and surface acoustic wave (SAW) sensors are the
most widely used sensor technologies. Each has
unique benefits and drawbacks for grain storage
applications (Pearce et al., 2003). High sensitivity
to reducing gases is a feature of metal oxide
semiconductor sensors, which are especially
useful for identifying alcohols and aldehydes that
are often linked to grain degradation (Persaud &
Dodd 1982). Conducting polymer sensors are
useful for identifying metabolites unique to insects
because they have a high sensitivity to organic
vapours and may be configured to react only to
certain classes of compounds (Gardner & Bartlett
1994).

Target volatile compounds' chemical variety must
be carefully taken into account while optimising
the composition of sensor arrays while preserving
an acceptable level of data complexity for pattern
recognition algorithms. According to research,
arrays including six to twelve sensors with
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complimentary response characteristics may
reliably distinguish between grain samples that are
infected and those that are not, all the while
offering enough redundancy to guarantee
dependable operation (Wilson & Baietto 2011).
Cross-reactive sensor arrays, where individual
sensors respond to various compound classes,
have proved especially successful for grain pest
detection applications since they capture the
complexity of volatile emission patterns while
preserving realistic system designs (Turner &
Magan 2004).
In order to convert intricate sensor response
patterns into useful pest detection data, pattern
recognition algorithms are essential. In order to
visualise sample clustering and identify important
factors that contribute to discriminating between
infested and uninfested samples, principal
component analysis (PCA) has been used
extensively for preliminary data exploration and
dimensionality reduction (Jolliffe, 2002). With
stated accuracies of over 90% for differentiating
between pest species and infestation levels, linear
discriminant analysis (LDA) and partial least
squares discriminant analysis (PLS-DA) have
shown exceptional performance for classification
tasks (Balasubramanian et al., 2007).

For complex pattern recognition tasks involving
multiple pest species and varying environmental
conditions, advanced machine learning techniques
such as support vector machines (SVM), random
forest algorithms, and artificial neural networks
(ANN) have shown superior performance (Loutfi et
al., 2015).

These algorithms provide strong performance
even when there is environmental unpredictability
and sensor drift, and they can manage non-linear
correlations between sensor responses and pest
traits (Wilson & Baietto 2009).

For e-nose applications in grain pest monitoring,
the temporal dynamics of volatile emission
patterns provide both potential and constraints.
Studies have shown that as infestations spread,
volatile emission profiles alter dramatically,
necessitating the wuse of temporal pattern
recognition algorithms and dynamic calibration
techniques (Chambers et al., 2013). Nevertheless,
these temporal patterns also provide useful data
for determining the age and severity of
infestations, which may allow for more complex
pest management choices based on population
growth prediction models (Phillips & Throne 2010).

SENSOR TECHNOLOGIES AND SYSTEM
DESIGN

The efficacy and dependability of electronic nose
systems for grain pest detection applications are
largely determined by the choice and refinement of
sensor technology. Several sensor systems have
been assessed in recent studies, and each offers
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unique benefits for identifying the wide variety of
volatile organic chemicals linked to infestations of
pests in grain storage (Wilson & Baietto 2009).

Because of its high sensitivity, wide dynamic
range, and affordable price, metal oxide
semiconductor (MOS) sensors have become one
of the most researched technologies for grain pest
detection (Persaud & Dodd 1982). When target
gas molecules come into contact with a heated
metal oxide surface, usually tungsten oxide (WOs)
or tin oxide (SnO:), these sensors work by altering
electrical conductivity (Gardner & Bartlett 1994).

Under controlled laboratory circumstances,
research by Balasubramanian et al. (2007)
showed that MOS sensor arrays could

successfully differentiate between grain samples

infested with Sitophilus oryzae, Rhyzopertha
dominica, and Tribolium castaneum with
classification accuracies above 92%.

One of MOS sensors' main benefits is its
remarkable sensitivity to reducing gases, such
alcohols and aldehydes, which are common
constituents of volatile emissions from insect
metabolites and damaged grains (Chambers et al.,
2013). Furthermore, when run at constant
temperatures, MOS sensors show high stability
and repeatability, which qualifies them for
automated monitoring applications (Pearce et al.,
2003). Nevertheless, these sensors also have
drawbacks, such as high power consumption
because of heating needs, possible sensitivity to
changes in ambient humidity, and vulnerability to
toxicity from sulfur-containing substances that
could exist in grain storage settings (Turner &
Magan 2004).

Another significant technological platform that has
shown encouraging outcomes for grain pest
detection applications is conducting polymer
sensors. Excellent sensitivity to a variety of
organic vapours is provided by these sensors,
which function by altering electrical characteristics
when volatile organic chemicals contact with
specialised polymer films (Gardner & Bartlett
1994). Research by Paolesse et al. (2006)
demonstrated that conducting polymer sensor
arrays could detect Sitophilus infestations in wheat
samples at population densities as low as 2-3
insects per kilogram of grain, representing a
significant improvement in sensitivity compared to
traditional detection methods.

Through careful selection of polymer compositions
and dopant materials, conducting polymer
sensors' adaptability enables the production of
sensors with customised selectivity characteristics
(Wilson & Baietto, 2009). This feature is especially
useful for grain pest applications, where sensors
with unique response patterns to certain classes of
volatile chemicals may be needed for pest species
classification (Loutfi et al., 2015). However,
conducting polymer sensors may be sensitive to
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changes in humidity and temperature in the
environment and may not be as stable over the
long term as other technologies (Persaud & Dodd
1982).

Due to its capacity to give quantitative mass
measurements of adsorbed volatile chemicals,
quartz crystal microbalance (QCM) sensors have
special benefits for the detection of grain pests
(Sauerbrey, 1959). These sensors assess the
concentrations of volatile compounds directly by
using the premise that the amount of material
adsorbed on the surface of a quartz crystal causes
its resonance frequency to drop proportionately
(Gardner & Bartlett, 1994). The ability of QCM
sensors coated with suitable selective layers to
identify certain volatile markers linked to insect
infestations and provide quantitative data on
chemical concentrations has been shown in
research applications in grain pest detection
(Turner & Magan 2004).

Because of its accuracy and quantitative
character, QCM sensors are especially useful for
applications that need to estimate the density of
insect populations or determine the extent of
infestations (Wilson & Baietto 2011). Furthermore,
QCM sensors don't need electricity or worry about
thermal stability as heated sensor technologies do
since they can function at ambient temperature
(Pearce et al.,, 2003). However, QCM sensors
need careful environmental management to
reduce interference from temperature and
humidity fluctuations, and they may be less
sensitive than other technologies for detecting
trace amounts of volatile substances (Chambers
et al., 2013).

An new technology that is appropriate for real-time
grain pest monitoring applications is surface
acoustic wave (SAW) sensors, which combine
high sensitivity and quick response qualities
(Grate et al., 1993). These sensors detect
changes in acoustic wave propagation properties
when volatile compounds interact with selective
coatings on the sensor surface, offering sensitivity
comparable to or exceeding that of other sensor
technologies while providing rapid response and
recovery times (Wilson & Baietto 2009). SAW
sensors may be especially useful for identifying
low-molecular-weight volatile chemicals, which are
indicative of early-stage pest infestations,
according to preliminary study (Turner & Magan
2004).

Grain pest detection applications need system
design considerations that go beyond sensor
selection to include data collecting techniques,
environmental management, and sample handling.
Sample preparation procedures have been shown
to have a major impact on detection performance;

variables including sample size, headspace
volume, incubation duration, and temperature
control affect sensor responses and volatile
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emission patterns (Paolesse et al.,, 2006). To
guarantee constant volatile emission rates,
standardised procedures usually include
temperature stabilisation, incubation times ranging
from 30 minutes to several hours, and sealed
containers with regulated headspace volumes
(Balasubramanian et al., 2007).

In grain storage facilities, environmental control
systems are essential for guaranteeing
dependable e-nose functioning. Temperature
variations need thermal compensation or
controlled measurement conditions since they may
have a substantial impact on sensor response
characteristics and volatile emission rates from
grain samples (Chambers et al.,, 2013). Since
many sensor technologies are cross-sensitive to
water vapour and since grain moisture content and
environmental factors may cause significant
variations in humidity levels in grain storage
facilities, humidity management is equally critical
(Wilson & Baietto 2011).

Systems for data gathering and signal processing
must be built to manage the multifaceted,
complicated data produced by sensor arrays and
provide real-time analytic capabilities appropriate
for applications requiring continuous monitoring
(Pearce et al., 2003). Microprocessor-based data
collection is often used in modern e-nose systems,
with sampling rates high enough to record sensor
response dynamics while requiring minimal
amounts of processing and data storage (Gardner
& Bartlett 1994). According to Turner and Magan
(2004), signal conditioning techniques such as
baseline correction, drift compensation, and noise

fitering are crucial for preserving steady
performance during long operating times.
An significant development for grain pest

monitoring applications is the incorporation of
wireless communication capabilities, which allow
for connection with larger farm management
systems and remote monitoring of different
storage sites (Wilson & Baietto 2009). Wireless e-
nose systems for grain storage monitoring have
been successfully used in recent studies. These
systems' data transfer capabilities enable
centralised analysis and automatic warning
generating when pest detection criteria are
surpassed (Loutfi et al., 2015).

MAJOR GRAIN STORAGE PESTS AND THEIR
VOLATILE SIGNATURES

Developing efficient electronic nose detection
systems requires a thorough understanding of the
biology, behaviour, and volatile emission
characteristics of the main pests that affect grain
storage. According to Phillips and Throne (2010),
the most economically important stored grain
pests have unique feeding habits, growth patterns,
and metabolic processes that result in distinctive
volatile organic compound signatures that may be
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identified by sensor systems that are properly
built.

The most damaging internal feeders in stored
grain ecosystems are Sitophilus species, which
include the granary weevil (S. granarius), maize
weevil (S. zeamais), and rice weevil (S. oryzae).
The larvae of these beetles consume the
endosperm and only the outer hull structure
remains after completing their whole
developmental cycle within individual grain kernels
(Hagstrum & Subramanyam 2006). Due to lipid
oxidation in damaged grain, Sitophilus species'
feeding activity results in unique volatile patterns,
such as increased concentrations of 1-octen-3-ol,
2-methyl-1-butanol, and  other  aldehydes
(Germinara et al., 2007). More than 20 volatile
chemicals were found to be directly linked to
Sitophilus infestations by Phillips et al. (1993).
Some of these compounds were found in grain
headspace at concentrations as low as 0.1 parts
per million.

There is a considerable correlation between the
developmental phases and population density of
insects and the temporal pattern of volatile
emission from Sitophilus infestations. Due to the
abrupt exposure of larval feeding damage and the
start of fresh feeding activity by emerged adults,
adult emergence from grain kernels causes
distinctive increases in volatile emissions (White et
al.,, 1995). In order to identify early-stage
infestations before serious grain damage occurs,
electronic nose systems intended for Sitophilus
detection must take these temporal fluctuations
into consideration while retaining sensitivity
(Paolesse et al., 2006).

Another important internal feeder with unique
volatile emission traits is the smaller grain borer,
Rhyzopertha dominica. In contrast to Sitophilus
species, adults of R. dominica may burrow widely
into grain masses, forming intricate networks of
galleries and chambers, and can start infestations
in intact grain kernels (Hagstrum & Subramanyam
2006). Because R. dominica prefers the germ
region of grain kernels, their feeding activity
results in increased quantities of terpene
chemicals, namely limonene and pinene
derivatives, as well as oxidised fatty acid products
(Chambers et al., 2013).

Based on the relative concentrations of certain
volatile markers, research has shown that
infestations of R. dominica and Sitophilus may be
differentiated from one another. Terpene-to-
aldehyde ratios are a reliable way to discriminate
between these pest groups (Germinara et al.,
2007). Since these pests may need different
control methods and have varying economic effect
profiles, the ability to distinguish between various
internal feeding species is especially crucial for
grain storage management (Turner & Magan
2004).
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The most important external feeding pests in
stored grain systems are Tribolium species, which
include the crimson flour beetle (T. castaneum)
and the confused flour beetle (T. confusum).
Instead of piercing intact grain kernels, these
beetles feed on broken grain kernels, flour
particles, and grain dust. They produce volatile
fingerprints that indicate their preferred food
sources and habitat needs (Phillips & Throne
2010). Elevated levels of benzaldehyde, 2-methyl-
2-butenal, and other ketones generated by the
oxidation of damaged grain components and the
metabolism of flour particles are indicative of
Tribolium infestations (White et al., 1990).
Because of their different biological niche and
feeding habits, Tribolium infestations create
volatile emission patterns that are significantly
different from those of internal feeders. According
to research, Tribolium infestations often result in
lower amounts of aliphatic alcohols and greater
concentrations of aromatic chemicals than
Sitophilus infestations, offering distinct criteria for
differentiation in electronic nose applications
(Germinara et al.,, 2007). Furthermore, since
Tribolium prefers damp, damaged grain conditions
that encourage the establishment of mould,
infestations may be linked to higher levels of
fungal-derived volatiles (Sinha & Muir 1973).

The sawtoothed grain beetle, Oryzaephilus
surinamensis, is a significant external feeder with
distinct volatile emission traits associated with its
feeding habits and preferred environment. High
levels of esters and organic acids are among the
volatile signatures produced by this species, which
mostly consumes broken kernels and processed
grain products (Hagstrum & Subramanyam 2006).
Concentrations of 2-methyl-1-propanol and ethyl
acetate have been shown to positively correlate
with pest population density, making them
especially distinctive volatile markers for O.
surinamensis infestations (Phillips et al., 1993).
Their comparable eating substrates and
overlapping habitat requirements must be carefully
taken into account when differentiating between
external feeding species. However, studies have
shown that, when examined with the right
multivariate statistical techniques, species-specific
metabolites and unique ratios of common volatile
chemicals may provide trustworthy identification
criteria (Wilson & Baietto 2011). For thorough
grain storage monitoring, the creation of electronic
nose systems that can distinguish between many
external feeder species is a significant
breakthrough (Loutfi et al., 2015).
Grain pest infestations' volatile emission patterns
are greatly influenced by environmental
influences, which makes it difficult to get reliable
detection  results under various storage
circumstances. Both pest metabolism and the
equilibrium concentrations of volatile compounds
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are impacted by temperature; higher temperatures
tend to increase emission rates but may also
change the relative proportions of various volatile
chemicals (Chambers et al., 2013). The best e-
nose performance requires  temperature
compensation algorithms or controlled measuring
circumstances since studies have shown that
temperature differences of 10-15°C may result in
2-3 fold increases in volatile emission rates
(Paolesse et al., 2006).

The effects of humidity on volatile emissions are
multifaceted, affecting the distribution of volatile
chemicals between the grain and air phases as
well as the degree of insect activity. Although high
humidity levels may increase volatile emission
rates by promoting insect feeding and
reproduction, they can also have an adverse effect
on sensor performance and the stability of volatile
compounds (Wilson & Baietto 2009). According to
research, the best detection results are usually
obtained at grain moisture concentrations of 12—
14%, which balances pest activity with
advantageous volatile emission properties (Turner
& Magan 2004).

PATTERN RECOGNITION
ANALYSIS METHODS

For electronic nose technology to be successfully
used in grain pest detection applications, strong
pattern recognition algorithms must be developed.
Sensor arrays provide complex, multi-dimensional
data that calls for advanced analysis techniques
that can reliably extract relevant information from a
variety of ambient factors and sample properties
(Loutfi et al., 2015).

The majority of e-nose data analysis applications
in grain pest detection have been built on Principal
Component Analysis (PCA), which offers
dimensionality  reduction and visualisation
capabilities that facilitate preliminary evaluation of
data structure and sample clustering patterns
(Jolliffe, 2002). According to Balasubramanian et
al. (2007), research applications have consistently
shown that PCA can effectively reveal clustering
patterns corresponding to various pest species,
infestation levels, and grain conditions. Typically,
3-5 principal components are needed to explain
80-90% of the total variance in sensor array data.
The link between principle component loadings
and recognised volatile emission patterns must be
carefully taken into account when interpreting PCA
findings for grain pest sprays. According to
research, the first main component often reflects
the intensity of total volatile emissions, which is
correlated with the degree of infestation and grain
damage (Paolesse et al., 2006). Variations in
volatile emission patterns related to variances in
pest species, developmental phases, and
environmental conditions are usually captured by
subsequent components (Wilson & Baietto 2011).
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Grain pest detection classification tasks have
shown great success using Linear Discriminant
Analysis (LDA), which provides the capacity to
determine the best linear combinations of sensor
variables for maximising discriminating between
preset classes (Fisher, 1936). When used to
identify grain pests, LDA has been shown to have
classification accuracy of 85-95%  for
differentiating between pest species in a controlled
laboratory setting (Germinara et al., 2007).
According to Turner and Magan (2004), the
method is especially useful for creating
straightforward, understandable categorisation
criteria that are easy to include into automated
monitoring systems.

The creation of relevant classification categories
and the selection of suitable features from sensor
array data are crucial for the success of LDA
applications. Baseline correction, normalisation,
and feature selection are examples of
preprocessing methods that have been shown to
dramatically enhance LDA performance for grain
pest detection applications (Chambers et al.,
2013). Because volatile emission patterns are
dynamic, time-based characteristics  such
response maxima, areas under response curves,
and response kinetic parameters have performed
better than single-point measurements (Wilson &
Baietto 2009).

Because of its capacity to manage correlated
variables and provide strong results with little
training data, partial least squares discriminant
analysis, or PLS-DA, has drawn more and more
interest for grain pest detection applications (Wold
et al., 2001). In grain pest identification, when
many sensors react to overlapping sets of
metabolites, PLS-DA is especially useful in sensor
arrays because individual sensors may show
linked responses to comparable volatile chemicals
(Paolesse et al., 2006).

When compared to conventional LDA techniques,
research applications of PLS-DA to grain pest
identification have shown better performance,
especially when handling complex datasets with
many pest species and variable environmental
circumstances (Balasubramanian et al., 2007).
For creating reliable classification models that
continue to function well across various grain
kinds and storage circumstances, PLS-DA's
capacity to find latent variables that optimise
covariance between sensor responses and
classification categories has proved useful (Loutfi
et al., 2015).

Because they can represent intricate, non-linear
interactions between sensor responses and pest
traits, artificial neural networks (ANN) have shown
remarkable potential for grain pest detection
applications (Haykin, 1999). Based on volatile
emission patterns, multi-layer perceptron networks
have been effectively used to predict the severity
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of infestations and differentiate between many
pest species at once (Wilson & Baietto 2011).
Studies have shown that when trained on
extensive datasets that include a variety of pest
species, grain types, and environmental
circumstances, ANN techniques may attain
classification accuracies of above 95% (Chambers
et al., 2013).

In order to prevent overfitting and preserve
generalisation performance, network topology,
training procedures, and validation technigues
must all be carefully considered when optimising
ANN designs for grain pest detection (Turner &
Magan 2004). According to research, networks
with 1-2 hidden layers and 5-15 neurones often
perform best on tasks involving the classification
of grain pests, striking a balance between the
complexity of the model and the amount of training
data needed (Paolesse et al., 2006). To make
sure that produced models would function
consistently on fresh samples that were not used
in the training process, cross-validation techniques
and independent test datasets are crucial
(Balasubramanian et al., 2007).

Because of their superior generalisation
capabilities and capacity to manage non-linearly
separable datasets via kernel maodifications,
Support Vector Machine (SVM) algorithms have
become very effective instruments for grain pest
detection applications (Vapnik, 1995). With
claimed accuracies continuously over 90%
throughout several research investigations, SVM
techniques have proven very successful for binary
classification tasks like differentiating between
infected and uninfested grain samples (Wilson &
Baietto 2009).

The predicted complexity of decision boundaries
between classes must be taken into account when
choosing a kernel for SVM applications in grain
pest detection. Because of the non-linear nature
of the correlations between sensor responses and
pest features, studies have shown that radial basis
function (RBF) kernels often perform better than
linear kernels for grain pest applications (Loutfi et
al.,, 2015). To guarantee reliable performance
across various datasets and operational situations,
kernel parameter optimisation necessitates
meticulous validation (Chambers et al., 2013).
Because of its capacity to manage huge datasets
with a variety of variable types and maintain
reliable performance even in the face of noise and
outliers, Random Forest algorithms have drawn
interest for use in grain pest detection applications
(Breiman, 2001). These ensemble approaches
include estimations of prediction confidence and
enhance classification accuracy by combining
predictions from many decision trees (Turner &
Magan 2004). According to Wilson and Baietto
(2011), research applications have shown that
Random Forest techniques are capable of
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handling the multi-dimensional, complicated data
that is characteristic of grain pest detection while
producing findings that are easy to understand on
the significance of various sensor variables.

Given that volatile emission patterns fluctuate
dynamically over time as infestations grow and
environmental factors change, the use of temporal
pattern identification is a significant improvement
for grain pest monitoring applications (Paolesse et
al., 2006). Autoregressive models and dynamic
time warping are two-time series analysis
techniques that have been effectively used to
identify temporal patterns in sensor responses that
correlate to developmental cycles and pest
population dynamics (Chambers et al., 2013).
Recurrent neural networks (RNN) and long short-
term memory (LSTM) networks are two machine
learning  techniques for temporal pattern
identification that may simulate sequential
relationships in sensor data across time
(Hochreiter & Schmidhuber 1997). These
methods are especially promising for predictive
applications, as e-nose systems may be able to
anticipate the growth of pest populations and
determine the best time to intervene (Loutfi et al.,
2015).

FIELD APPLICATIONS AND PERFORMANCE
EVALUATION

Both great promise and major obstacles that need
to be overcome for effective commercial
implementation have been identified by the
translation of laboratory-based electronic nose
research into useful field applications for grain
pest identification. Important insights into the
performance traits and constraints of e-nose
technology under practical working situations may
be gained from field assessment tests carried out
in real grain storage facilities (Wilson & Baietto
2011).

The viability of e-nose technology for regular pest
monitoring applications has been shown by
extensive assessment tests carried out in
commercial grain elevators. Comparing a
prototype e-nose system against conventional
inspection techniques, Chambers et al. (2013)
found that the system achieved 87-92% pest
detection accuracy over the course of a complete
storage season in wheat silos. According to the
research, e-nose devices provide major benefits
for preventative pest control tactics as they may
identify early infestations two to four weeks before
visual inspection techniques.

Depending on operating settings, grain kinds, and
climatic circumstances, field-deployed e-nose
systems exhibit a wide range of performance
characteristics. According to research, detection
accuracy normally falls between 80 and 95
percent under ideal circumstances, but it may drop
to 70 to 85 percent in highly changeable
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environments or when dealing with mixed pest
populations (Paolesse et al., 2006). One of the
biggest problems is temperature changes, which
may have an impact on sensor performance and
volatile emission patterns from grain samples due
to daily temperature variations in storage facilities
(Turner & Magan 2004).

Because grain storage facilities often encounter
large humidity changes as a result of grain
moisture migration, ventilation activities, and
seasonal weather patterns, the impacts of
humidity on field performance have proved
especially difficult to manage (Balasubramanian et
al., 2007). According to research, differences in
relative humidity of 20-30% may cause sensor
response Vvariations comparable to minor pest
infestations; thus, in order to maintain dependable
detection performance, advanced compensation
algorithms or environmental control techniques are
needed (Wilson & Baietto 2009).

One crucial area of continuing study is the
development of calibrating techniques for field
applications. Due to variations in grain types,
storage settings, and operating protocols,
laboratory calibration models often lose accuracy
when used in field settings (Chambers et al.,
2013). Performance maintenance over long
deployment durations has been shown to be
possible using adaptive calibration techniques that
continually update model parameters based on
field observations (Loutfi et al., 2015).

Numerous performance criteria have been used in
comparative assessment studies to compare e-
nose's performance to that of well-established pest
detection techniques. Studies have repeatedly
shown that e-nose systems are faster and more
automated than traditional techniques; full
analyses usually take 15 to 30 minutes, whereas
conventional procedures take hours or days
(Paolesse et al., 2006). Nevertheless, e-nose
systems still have greater initial capital costs than
conventional techniques, necessitating a thorough
economic study to support deployment in certain
applications (Turner & Magan 2004).

There are significant performance trade-offs
between e-nose and conventional detection
techniques, according to sensitivity comparisons.
E-nose systems could be less specific than
pheromone traps for detecting specific pest
species, even while they might be able to identify
the presence of pests at lower population densities
than visual examination techniques (Wilson &
Baietto 2011). According to research, the best
pest monitoring plans could include conventional
technigues for population assessment and species
confirmation with e-nose technology for early
detection (Chambers et al., 2013).

Sensor drift and stability have been shown to be
important limitations limiting the practical value of
e-nose systems for grain pest monitoring in long-
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term performance assessment studies. Significant
variations in sensor baseline responses across 6-
month deployment periods were reported by

Balasubramanian et al. (2007), necessitating
periodic recalibration to maintain adequate
detection performance. Research on self-

calibrating sensor systems and drift correction
algorithms is ongoing with the goal of enhancing
long-term dependability (Loutfi et al., 2015).

A number of variables, such as system costs,
operational savings, and the value of better pest
management results, determine whether e-nose
technology for grain pest detection is economically
viable. When pest pressure is moderate to high
and early detection capabilities allow for reduced
pesticide usage or prevent significant grain losses,
e-nose systems may Yyield positive returns on
investment, according to cost-benefit analyses
done for commercial grain storage operations
(Turner & Magan 2004).

Adoption rates for e-nose technology have been
shown to be significantly impacted by integration
issues with current grain storage systems.
According to research, sampling tactics, data
management systems, and staff training needs
must all be carefully considered for effective
deployment (Wilson & Baietto, 2009). Grain
storage employees with little technical experience
have shown a strong preference for automatic
interpretation systems and user-friendly interfaces
(Paolesse et al., 2006).

Important information about the accuracy and
dependability of the system has been gleaned
from validation experiments that contrast the
findings of e-nose detection with independently
verified insect infestations. System performance
may vary greatly based on local circumstances,
grain types, and insect populations, according to
multi-site validation studies carried out across
several geographic locations and grain storage
facilities (Chambers et al.,, 2013). To guarantee
consistent performance across many installations,
standardising measuring processes and
calibration techniques is a constant problem
(Wilson & Baietto 2011).

When permanent installation solutions are
impractical or not financially viable, the advent of
portable e-nose devices has created new avenues
for grain pest monitoring. Handheld e-nose
devices have been shown to provide dependable
pest detection capabilities for quality control
applications in grain processing plants, farm-level
grain bins, and smaller storage facilities (Turner &
Magan, 2004). In contrast to laboratory-based
equipment, portable devices usually have lower
sensitivity and may need more frequent calibration
to maintain satisfactory performance (Loutfi et al.,
2015).
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CHALLENGES AND LIMITATIONS

Electronic nose technology has a lot of promise for
detecting grain pests, but its broad commercial
adoption is still hampered by a number of basic
issues and restrictions. To fully realise the
promise of e-nose technology for grain storage
applications, these limitations—which  span
technological, economic, and practical domains—
must be overcome via ongoing research and
development initiatives (Wilson & Baietto 2011).
The main technological obstacles for grain pest
detection applications are sensor selectivity and
specificity.  Grain degradation products, fungal
metabolites, residual pesticides, and
environmental pollutants are just a few of the
many possible sources of volatile organic
compounds that may be found in the complex
chemical environment of grain storage facilities
(Chambers et al.,, 2013). These interfering
substances have been shown to generate sensor
responses that substantially overlap with pest-
related signals, which may result in false-positive
detections or obscure real pest signals (Paolesse
et al., 2006).

Sensor materials and operation conditions must
be carefully optimised to maximise
responsiveness to target compounds while
minimising interference from non-target volatiles in

order to build sensor arrays with improved
selectivity. In order to improve discriminating
capabilities, research has concentrated on

creating chemically selective sensor coatings and
operational procedures (Turner & Magan 2004).
Complete selectivity is seldom possible due to the
inherent  cross-reactivity of most sensor
technologies; instead, extensive pattern
recognition algorithms are needed to extract useful
information from intricate sensor response
patterns (Gardner & Bartlett 1994).

Another major obstacle to the field use of e-nose
technology in grain storage facilities is
environmental stability. Variations in temperature
and humidity may have an impact on volatile
emission patterns and sensor performance, which
might jeopardise the accuracy and dependability
of detection (Wilson & Baietto 2009). According to
research, sensor response changes comparable
to mild pest infestations may result from
temperature swings of 5-10°C, which are typical in
many storage facilities (Balasubramanian et al.,
2007).

Grain storage settings can undergo high humidity
swings owing to grain moisture migration and
ventilation  activities, and many  sensor
technologies demonstrate strong cross-sensitivity
to water vapour, making humidity effects
especially troublesome (Chambers et al., 2013).
Although there is ongoing research on moisture-
resistant sensor designs and  humidity
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compensation algorithms, total removal of
humidity effects is still difficult (Loutfi et al., 2015).

Long-term stability problems and sensor drift have
become important constraints for applications
involving continuous monitoring. Sensor baseline
responses and sensitivity have been shown to
fluctuate significantly over weeks to months,
necessitating regular recalibration to maintain
acceptable performance (Turner & Magan 2004).
The ageing of sensitive materials, contamination
of sensor surfaces, and slow modifications to
sensor electronics are the factors that cause
sensor drift (Wilson & Baietto 2011).

Both software and hardware technologies have
been the main focus of drift compensating strategy
development. Software solutions include baseline
correction algorithms and adaptive calibration
models, while hardware solutions include
reference gas systems, sensor replacement
procedures, and self-cleaning sensor designs
(Paolesse et al., 2006). Effective drift correction is
still difficult to achieve, however, and often
necessitates large increases in system complexity
and expense (Chambers et al., 2013).

Problems with repeatability and standardisation
have made it difficult to compare findings from
various research teams and create universal
calibration  models. Setting comparable
performance standards is challenging due to
variations in sensor array designs, measurement
settings, sample preparation procedures, and data
processing techniques (Wilson & Baietto 2009).
One major obstacle to the maturity of technology
is the lack of standardised reference materials and
calibration procedures for grain pest detection
applications (Turner & Magan 2004).

Research organisations, technology suppliers,
and end users would need to work together to
create consensus procedures for system design,
calibration, and performance assessment in order
to set industry standards for e-nose applications in
grain pest detection (Loutfi et al., 2015).
Technology transfer and more insightful
comparisons of various methods and systems
would be made possible by such standards
(Balasubramanian et al., 2007).

High initial capital expenditures, continuous
maintenance needs, and the demand for technical
know-how to run and maintain complex electronic
systems are some of the financial obstacles to
adoption (Chambers et al., 2013). According to
research, conventional pest monitoring equipment
only costs a few hundred dollars, but
contemporary e-nose systems often need initial
expenditures of $10,000 to $50,000, depending on
system complexity and capabilities (Wilson &
Baietto 2011).

The value of better pest control results and
operational savings are crucial components of the
economic case for e-nose technology. The
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advantages of early detection and lower pesticide
use may make the investment in e-nose
technology worthwhile for large commercial grain
storage facilities with strong pest pressure (Turner
& Magan 2004). Smaller businesses, however,
would find it challenging to justify the expenses
unless system prices drop sharply or shared
monitoring  services are made accessible
(Paolesse et al., 2006).

Practical obstacles to the broad use of e-nose
technology include the need for training and
experience. According to Loutfi et al. (2015),
many grain storage facilities may lack the
technical expertise needed to operate and
maintain complex sensor systems. Studies have
highlighted the significance of creating automatic
interpretation systems and user-friendly interfaces
that reduce the technical know-how needed for
everyday operations (Chambers et al., 2013).
Additional real-world difficulties arise when
integrating e-nose technology with current grain
storage systems. Data management systems
must interface with current record-keeping and
decision-making  processes, and sampling
methodologies must be consistent with standard
handling practices (Wilson & Baietto 2009). Some
of these integration issues have started to be
addressed by the development of cloud-based
data analysis tools and wireless communication
capabilities (Turner & Magan 2004).

FUTURE DIRECTIONS AND CONCLUSIONS

A number of new research avenues and technical
developments that solve present constraints and
broaden application possibilities  will  be
advantageous to the future development of

electronic nose technology for grain pest
monitoring and detection. Together, these
advancements in sensor technology, data

processing technigues, system integration, and
economic feasibility suggest that e-nose
technology will be used more widely in grain
storage operations (Loutfi et al., 2015).

Developments in  materials science and
nanotechnology are propelling the creation of
next-generation sensor devices with improved

stability, selectivity, and sensitivity. Carbon
nanotubes, graphene, and other cutting-edge
materials have been used to create

nanostructured metal oxide sensors, which have
shown improved performance characteristics such
as lower operating temperatures, increased
sensitivity, and better resistance to environmental
interference (Wilson & Baietto 2011). The
development of highly selective sensors that are
suited to certain volatile chemicals linked to
specific pest species is possible with research on
molecularly imprinted polymer sensors (Chambers
et al., 2013).
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One key approach to enhancing system
performance and dependability is the integration of
many sensor technologies into a single e-nose
platform. When compared to single-technology
methods, hybrid systems that combine
complementary sensor technologies—like
conducting polymer sensors with MOS—have
shown improved discriminating capabilities (Turner
& Magan 2004). In addition to offering inherent
redundancy for increased dependability, sensor
fusion algorithms that properly integrate data from
many sensor types have the potential to greatly
increase detection accuracy (Paolesse et al.,
2006).

Advances in machine learning and artificial
intelligence are opening up new avenues for
enhancing data interpretation and pattern
detection  skills. For complicated pattern
identification tasks including temporal and spatial
patterns in sensor data, deep learning techniques
such as convolutional neural networks and
recurrent neural networks have shown some
degree of success (Balasubramanian et al., 2007).
With the use of transfer learning approaches, it
may be possible to create reliable models that
need little further training data to be adjusted to
new grain varieties, insect species, or
environmental circumstances (Loutfi et al., 2015).
Through networked sensor systems that allow for
complete facility monitoring and predictive
analytics, the combination of e-nose technology
and Internet of Things (loT) capabilities promises
to transform grain storage monitoring (Wilson &
Baietto 2009). By combining data from many
installations, cloud-based data analysis tools may
enable ongoing model improvement while offering
advanced pattern  recognition  capabilities
(Chambers et al., 2013).

Expanding the availability of e-nose technology to
smaller grain storage enterprises requires both
cost reduction and miniaturisation. Developments
in semiconductor manufacturing and
microfabrication are making it possible to create
chip-scale sensor arrays, which have the potential
to significantly lower system costs while
preserving or enhancing performance attributes
(Turner & Magan 2004). Small-scale grain
storage businesses may be able to afford the
portable  monitoring  capabilities that the
development of smartphone-based e-nose
systems might provide (Paolesse et al., 2006).
Research organisations, technology developers,
and industry stakeholders must work together to
standardise e-nose technology for grain pest
detection applications. It would be easier to
transfer technology and make meaningful
comparisons across various systems and
methodologies if reference materials, calibration
procedures, and performance assessment criteria
were established (Wilson & Baietto 2011). Global
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standards that make it easier for technology to be
adopted in various geographical locations and
regulatory contexts might be established via
international cooperation through groups like the
International Union of Food Science and
Technology (Loutfi et al., 2015).

Although they are yet mostly unexplored,
regulatory issues pertaining to e-nose technology
in grain storage applications will become more
significant as the technology gets closer to
commercial maturity. Agricultural regulatory
bodies may need to validate and approve the
integration of e-nose monitoring data with pest
control decision-making systems (Chambers et al.,

2013). Grain storage specialists may become
more confident in e-nose technology and
guarantee consistent performance with the

creation of operator certification programs and
quality assurance procedures (Turner & Magan
2004).

For e-nose technology to be successfully used in
grain storage operations, training and educational
initiatives will be crucial. The need of creating
thorough training materials and support systems to
help grain storage staff run and maintain e-nose
systems has been emphasised by research
(Wilson & Baietto 2009). Collaborations between
agricultural extension agencies and technology
developers might help disseminate knowledge and
provide system users continuous technical
assistance (Paolesse et al., 2006).

There is a significant chance to raise system value
and adoption rates by extending e-nose
applications beyond simple insect detection to
include thorough grain quality monitoring.
According to research, e-nose systems are
capable of detecting fungal contamination, grain
degradation, insect infestations, and other quality
indicators that impact grain safety and value
(Chambers et al.,, 2013). Through increased
functionality, multi-parameter monitoring
capabilities might provide a thorough evaluation of
grain quality while defending greater system costs
(Loutfi et al., 2015).

To sum up, electronic nose technology for grain
pest detection has shown a great deal of promise
for enhancing the automation, speed, and
accuracy of pest monitoring in grain storage
facilities. The scientific basis for e-nose
applications has been established by current
research, which has also shown proof-of-concept
performance in both lab and field settings.
However, before broad commercial acceptance
can be accomplished, a number of practical and
technological issues need to be resolved.
Enhancing selectivity and specificity for target pest
species, developing efficient drift compensation
strategies and improving sensor  stability,
establishing standardised protocols for system
calibration and performance evaluation, lowering
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system costs through manufacturing scale-up and
technological advancements, and creating
extensive training and support systems for end
users are among the most important research
priorities (Wilson & Baietto 2011).

It will involve ongoing cooperation between sensor
technology developers, agricultural researchers,
and stakeholders in the grain storage sector to
successfully solve these issues. Continued
investment in R&D is justified by the potential
advantages of e-nose technology for enhancing
food security via improved pest control
capabilities. Electronic nose technology has the
potential to become a standard part of
contemporary grain storage operations with the
right technological advancements and the
development of supporting infrastructure. This
would greatly aid international efforts to improve
food security and minimise post-harvest food
losses (Chambers et al., 2013).
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