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ABSTRACT: With yearly economic losses estimated at billions of dollars, post-harvest losses 
from insect pest infestations in stored grains pose a serious threat to global food security.  
Visual examination, trapping methods, and chemical analysis are the mainstays of traditional 
pest detection methods in grain storage facilities. These approaches are often labour-intensive, 
time-consuming, and may not identify infestations in their early stages. A possible non-
destructive, quick, and affordable substitute for detecting, identifying, and tracking grain pest 
infestations is electronic nose (e-nose) technology.  Examining the fundamental ideas, sensor 
technology, pattern recognition algorithms, and field applications, this review summarises 
recent studies on e-nose uses in agricultural grain pest control.  We examine the performance 
attributes of several e-nose systems, talk about their drawbacks and restrictions, and provide 
suggestions for future lines of inquiry.  Sitophilus species, Rhyzopertha dominica, Tribolium 
species, and Oryzaephilus surinamensis are among the major grain storage pests covered in the 
review. It emphasises how electronic nose technology can be used to detect volatile organic 
compounds (VOCs) released by these pests and damaged grains.  Some methods may identify 
infestations at population densities as low as 1–5 insects per kilogramme of grain, according to 
current research, which shows detection accuracies for a variety of pest species ranging from 
80–95%.  For broad commercial usage, however, issues with standardisation, environmental 
interference, and long-term sensor stability still need to be resolved. 

Keywords: Electronic nose, grain storage, pest detection, volatile organic compounds, pattern 
recognition, food security. 

 
INTRODUCTION 

Population increase, climate change, and post-
harvest losses are all putting increasing strain on 
global food security, and one of the biggest 
problems in the food supply chain is insect 
infestations in stored grains.  According to the 
Food and Agriculture Organisation (FAO), insect 
pest-related post-harvest losses make up 10–40% 
of the world's grain output, resulting in yearly 
losses of more than $5 billion (Phillips & Throne, 
2010).  Although industrialised nations also have 
significant difficulties in preserving grain quality 
during storage, these losses are more severe in 
poor nations due to a lack of storage facilities and 
pest control skills (Hagstrum & Subramanyam 
2006). 

 In grain storage facilities, visual examination, 
pitfall traps, probe traps, and chemical residue 
analysis are the mainstays of traditional pest 
detection techniques.  Despite being the norm for 
many years, these techniques have built-in 
drawbacks that reduce their usefulness in 
contemporary grain storage operations.  Visual 
examination is subjective, time-consuming, and 
often misses early-stage infestations when 
remediation would be most successful. It also 
needs skilled staff (Trematerra & Sciarretta 2004).  
Although trapping techniques are helpful for 
monitoring, they are not very good for early 
warning systems since they usually discover pests 
only after populations have developed (Toews et 
al., 2006).  Despite their accuracy, chemical 
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analysis techniques are not feasible for regular 
monitoring applications because they need 
laboratory space, skilled staff, and a substantial 
amount of time for sample preparation and 
analysis (White et al., 1990). 
Grain pest monitoring and detection have 
undergone a paradigm change with the advent of 
electronic nose (e-nose) technology.  By detecting 
and identifying volatile organic compounds (VOCs) 
in the air space above samples, electronic noses 
are analytical tools that are intended to replicate 
the human olfactory system (Gardner & Bartlett 
1994).  According to Paolesse et al. (2006), the 
basic idea behind e-nose applications in grain pest 
detection is that grains afflicted with insects 
release distinct patterns of volatile chemicals that 
are different from those produced by uninfested 
grains.  According to Chambers et al. (2013), 
these volatiles include molecules released from 
damaged grain kernels, metabolites produced by 
the insects themselves, and secondary 
metabolites from fungal contamination, which 
often coexists with insect infestations. 
 E-nose technology has a lot of potential benefits 
for detecting grain pests.  Electronic noses are 
appropriate for continuous monitoring applications 
because they provide quick, non-destructive 
examination with little sample preparation needed 
(Pearce et al., 2003).  Unlike conventional 
techniques, the technology may be able to identify 
infestations at lower population densities, allowing 
for earlier intervention and a decrease in the 
requirement for chemical treatments (Wilson & 
Baietto 2009).  Grain handling operations may 
also benefit from the automation and integration of 
e-nose systems, which lowers labour costs and 
produces quantifiable, objective findings that are 
less reliant on operator skill (Turner & Magan 
2004). 
Nevertheless, there are particular difficulties in 
using e-nose technology for grain pest 
identification.  Variable temperature, humidity, and 
airflow conditions are characteristics of grain 
storage settings that might impact volatile 
emission patterns and insect metabolism 
(Paolesse et al., 2006).  Sophisticated pattern 
recognition algorithms and reliable sensor systems 
are required to handle the complex analytical 
challenges posed by the presence of numerous 
pest species, different grain types and conditions, 
and possible interference from other sources of 
volatiles in storage facilities (Wilson & Baietto 
2011). 
With the advances in recent technologies, Smart 
farming allows to utilize Internet of things (IoT) to 
assist the farmers for reducing the wastages and 
improving the productivity (Sindhu and Indirani 
2020). Sensors, drones, and precision farming 
software especially artificial intelligence and 
machine learning are rapidly being used in 

agriculture to increase efficiency, production, and 
sustainability (Lingireddy et al., 2023).  
 
Zero Budget Natural Farming (ZBNF) is a 
technique for chemical-free agriculture that is 
based on traditions from ancient India 
(Mohammed Ghouse et al., 2025). 
This study offers a thorough examination of recent 
studies on the use of electronic noses for 
agricultural grain pest identification, monitoring, 
and detection.  We look at the scientific 
underpinnings of these applications, assess how 
well different e-nose systems and sensor 
technologies work, study data processing and 
pattern recognition strategies, and talk about real-
world implementation issues for commercial grain 
storage operations.  Along with discussing present 
restrictions and difficulties, the paper offers 
suggestions for future lines of inquiry that can 
improve the efficiency and use of e-nose 
technology in grain pest control. 

PRINCIPLES OF ELECTRONIC NOSE 
TECHNOLOGY FOR PEST DETECTION 

Using arrays of chemical sensors and 

sophisticated signal processing algorithms, 

electronic nose systems replicate the function of 

biological olfactory systems by operating on the 

basis of pattern recognition of volatile organic 

compound signatures (Gardner & Bartlett 1994). 

The basic idea behind e-nose applications in grain 

pest identification is that, by using multivariate 

analysis of sensor responses, insect-infested 

grains may be identified from uninfested samples 

by their distinctive patterns of volatile chemicals 

(Paolesse et al., 2006; Sri et al., 2021; Kumar 

2023; Bais et al., 2023; Prashanth Kumar 2023; 

Saleem et al., 2021).   
The grain-pest ecology has a variety of sources for 
the volatile organic molecules that are important 
for detecting grain pests. Direct metabolites 
generated by insect pests during eating, breathing, 
and reproduction are examples of primary sources 
(Chambers et al., 2013). As they feed grain 
endosperm and mature, Sitophilus species—also 
referred to as grain weevils—produce unique 
patterns of aldehydes, alcohols, and esters 
(Phillips et al., 1993). Because of their feeding 
habits and the mechanical harm they inflict on 
grain kernels, Rhyzopertha dominica (lesser grain 
borer) infestations are characterised by the 
formation of certain terpene chemicals and 
oxidised fatty acid derivatives (Germinara et al., 
2007).  
Compounds emitted from damaged grain kernels 
as a consequence of insect feeding activities are 
examples of secondary volatile sources. According 
to Chambers et al. (2013), chewing insects create 
mechanical damage that upsets cellular 
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architecture and enzymatic functions, causing 
previously compartmentalised chemicals to leak 
out and new volatiles to arise via oxidation and 
degradation processes. Even while insect-specific 
metabolites may be present in trace amounts, 
these damage-associated volatiles often contain 
lipid oxidation products as hexanal, pentanal, and 
different ketones, which act as indirect markers of 
pest presence (White et al., 1995).  
Compounds generated by fungal contamination, 
which often coexists with insect infestations, are 
classified as tertiary volatile sources. Many stored 
grain pests promote circumstances conducive for 
fungal development by the entrance of moisture 
and the production of micro-wounds in grain 
kernels (Sinha & Muir, 1973). Additional indicators 
of storage degradation linked to pest activity may 
be found in the distinctive patterns of alcohols, 
ketones, and sesquiterpenes produced by fungi 
such Aspergillus and Penicillium species (Magan 
& Evans 2000). 
The concentration and volatility of target chemicals 
in the headspace above grain samples have a 
significant impact on the e-nose systems' 
sensitivity of detection. Temperature, humidity, 
feeding activity, grain type and condition, 
developmental stage, and pest population density 
are some of the variables that affect volatile 
emission rates (Wilson & Baietto 2009). Early-
stage infestations may produce lower 
concentrations of target compounds but may also 
display more specific chemical signatures because 
secondary effects are less complex, according to 
research showing that volatile emission patterns 
change dynamically as infestations progress 
(Chambers et al., 2013). 
An essential part of efficient e-nose systems for 
grain pest detection is sensor array design. Metal 
oxide semiconductors (MOS), conducting 
polymers, quartz crystal microbalances (QCM), 
and surface acoustic wave (SAW) sensors are the 
most widely used sensor technologies. Each has 
unique benefits and drawbacks for grain storage 
applications (Pearce et al., 2003). High sensitivity 
to reducing gases is a feature of metal oxide 
semiconductor sensors, which are especially 
useful for identifying alcohols and aldehydes that 
are often linked to grain degradation (Persaud & 
Dodd 1982). Conducting polymer sensors are 
useful for identifying metabolites unique to insects 
because they have a high sensitivity to organic 
vapours and may be configured to react only to 
certain classes of compounds (Gardner & Bartlett 
1994).  
Target volatile compounds' chemical variety must 
be carefully taken into account while optimising 
the composition of sensor arrays while preserving 
an acceptable level of data complexity for pattern 
recognition algorithms. According to research, 
arrays including six to twelve sensors with 

complimentary response characteristics may 
reliably distinguish between grain samples that are 
infected and those that are not, all the while 
offering enough redundancy to guarantee 
dependable operation (Wilson & Baietto 2011). 
Cross-reactive sensor arrays, where individual 
sensors respond to various compound classes, 
have proved especially successful for grain pest 
detection applications since they capture the 
complexity of volatile emission patterns while 
preserving realistic system designs (Turner & 
Magan 2004).  
In order to convert intricate sensor response 
patterns into useful pest detection data, pattern 
recognition algorithms are essential. In order to 
visualise sample clustering and identify important 
factors that contribute to discriminating between 
infested and uninfested samples, principal 
component analysis (PCA) has been used 
extensively for preliminary data exploration and 
dimensionality reduction (Jolliffe, 2002). With 
stated accuracies of over 90% for differentiating 
between pest species and infestation levels, linear 
discriminant analysis (LDA) and partial least 
squares discriminant analysis (PLS-DA) have 
shown exceptional performance for classification 
tasks (Balasubramanian et al., 2007). 
For complex pattern recognition tasks involving 
multiple pest species and varying environmental 
conditions, advanced machine learning techniques 
such as support vector machines (SVM), random 
forest algorithms, and artificial neural networks 
(ANN) have shown superior performance (Loutfi et 
al., 2015). 
These algorithms provide strong performance 
even when there is environmental unpredictability 
and sensor drift, and they can manage non-linear 
correlations between sensor responses and pest 
traits (Wilson & Baietto 2009). 
For e-nose applications in grain pest monitoring, 
the temporal dynamics of volatile emission 
patterns provide both potential and constraints. 
Studies have shown that as infestations spread, 
volatile emission profiles alter dramatically, 
necessitating the use of temporal pattern 
recognition algorithms and dynamic calibration 
techniques (Chambers et al., 2013). Nevertheless, 
these temporal patterns also provide useful data 
for determining the age and severity of 
infestations, which may allow for more complex 
pest management choices based on population 
growth prediction models (Phillips & Throne 2010). 

SENSOR TECHNOLOGIES AND SYSTEM 
DESIGN 

The efficacy and dependability of electronic nose 
systems for grain pest detection applications are 
largely determined by the choice and refinement of 
sensor technology. Several sensor systems have 
been assessed in recent studies, and each offers 
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unique benefits for identifying the wide variety of 
volatile organic chemicals linked to infestations of 
pests in grain storage (Wilson & Baietto 2009).  
Because of its high sensitivity, wide dynamic 
range, and affordable price, metal oxide 
semiconductor (MOS) sensors have become one 
of the most researched technologies for grain pest 
detection (Persaud & Dodd 1982). When target 
gas molecules come into contact with a heated 
metal oxide surface, usually tungsten oxide (WO₃) 
or tin oxide (SnO₂), these sensors work by altering 
electrical conductivity (Gardner & Bartlett 1994). 
Under controlled laboratory circumstances, 
research by Balasubramanian et al. (2007) 
showed that MOS sensor arrays could 
successfully differentiate between grain samples 
infested with Sitophilus oryzae, Rhyzopertha 
dominica, and Tribolium castaneum with 
classification accuracies above 92%.  
One of MOS sensors' main benefits is its 
remarkable sensitivity to reducing gases, such 
alcohols and aldehydes, which are common 
constituents of volatile emissions from insect 
metabolites and damaged grains (Chambers et al., 
2013). Furthermore, when run at constant 
temperatures, MOS sensors show high stability 
and repeatability, which qualifies them for 
automated monitoring applications (Pearce et al., 
2003). Nevertheless, these sensors also have 
drawbacks, such as high power consumption 
because of heating needs, possible sensitivity to 
changes in ambient humidity, and vulnerability to 
toxicity from sulfur-containing substances that 
could exist in grain storage settings (Turner & 
Magan 2004). 
Another significant technological platform that has 
shown encouraging outcomes for grain pest 
detection applications is conducting polymer 
sensors. Excellent sensitivity to a variety of 
organic vapours is provided by these sensors, 
which function by altering electrical characteristics 
when volatile organic chemicals contact with 
specialised polymer films (Gardner & Bartlett 
1994). Research by Paolesse et al. (2006) 
demonstrated that conducting polymer sensor 
arrays could detect Sitophilus infestations in wheat 
samples at population densities as low as 2-3 
insects per kilogram of grain, representing a 
significant improvement in sensitivity compared to 
traditional detection methods.  
Through careful selection of polymer compositions 
and dopant materials, conducting polymer 
sensors' adaptability enables the production of 
sensors with customised selectivity characteristics 
(Wilson & Baietto, 2009). This feature is especially 
useful for grain pest applications, where sensors 
with unique response patterns to certain classes of 
volatile chemicals may be needed for pest species 
classification (Loutfi et al., 2015). However, 
conducting polymer sensors may be sensitive to 

changes in humidity and temperature in the 
environment and may not be as stable over the 
long term as other technologies (Persaud & Dodd 
1982).  
Due to its capacity to give quantitative mass 
measurements of adsorbed volatile chemicals, 
quartz crystal microbalance (QCM) sensors have 
special benefits for the detection of grain pests 
(Sauerbrey, 1959). These sensors assess the 
concentrations of volatile compounds directly by 
using the premise that the amount of material 
adsorbed on the surface of a quartz crystal causes 
its resonance frequency to drop proportionately 
(Gardner & Bartlett, 1994). The ability of QCM 
sensors coated with suitable selective layers to 
identify certain volatile markers linked to insect 
infestations and provide quantitative data on 
chemical concentrations has been shown in 
research applications in grain pest detection 
(Turner & Magan 2004). 
Because of its accuracy and quantitative 
character, QCM sensors are especially useful for 
applications that need to estimate the density of 
insect populations or determine the extent of 
infestations (Wilson & Baietto 2011). Furthermore, 
QCM sensors don't need electricity or worry about 
thermal stability as heated sensor technologies do 
since they can function at ambient temperature 
(Pearce et al., 2003). However, QCM sensors 
need careful environmental management to 
reduce interference from temperature and 
humidity fluctuations, and they may be less 
sensitive than other technologies for detecting 
trace amounts of volatile substances (Chambers 
et al., 2013).  
An new technology that is appropriate for real-time 
grain pest monitoring applications is surface 
acoustic wave (SAW) sensors, which combine 
high sensitivity and quick response qualities 
(Grate et al., 1993). These sensors detect 
changes in acoustic wave propagation properties 
when volatile compounds interact with selective 
coatings on the sensor surface, offering sensitivity 
comparable to or exceeding that of other sensor 
technologies while providing rapid response and 
recovery times (Wilson & Baietto 2009). SAW 
sensors may be especially useful for identifying 
low-molecular-weight volatile chemicals, which are 
indicative of early-stage pest infestations, 
according to preliminary study (Turner & Magan 
2004).  
Grain pest detection applications need system 
design considerations that go beyond sensor 
selection to include data collecting techniques, 
environmental management, and sample handling. 
Sample preparation procedures have been shown 
to have a major impact on detection performance; 
variables including sample size, headspace 
volume, incubation duration, and temperature 
control affect sensor responses and volatile 



Elçiçek  et al.,                         AgriBio Innovations         2(1): 31-43(2025)                                          35 

emission patterns (Paolesse et al., 2006). To 
guarantee constant volatile emission rates, 
standardised procedures usually include 
temperature stabilisation, incubation times ranging 
from 30 minutes to several hours, and sealed 
containers with regulated headspace volumes 
(Balasubramanian et al., 2007).  
In grain storage facilities, environmental control 
systems are essential for guaranteeing 
dependable e-nose functioning. Temperature 
variations need thermal compensation or 
controlled measurement conditions since they may 
have a substantial impact on sensor response 
characteristics and volatile emission rates from 
grain samples (Chambers et al., 2013). Since 
many sensor technologies are cross-sensitive to 
water vapour and since grain moisture content and 
environmental factors may cause significant 
variations in humidity levels in grain storage 
facilities, humidity management is equally critical 
(Wilson & Baietto 2011). 
Systems for data gathering and signal processing 
must be built to manage the multifaceted, 
complicated data produced by sensor arrays and 
provide real-time analytic capabilities appropriate 
for applications requiring continuous monitoring 
(Pearce et al., 2003). Microprocessor-based data 
collection is often used in modern e-nose systems, 
with sampling rates high enough to record sensor 
response dynamics while requiring minimal 
amounts of processing and data storage (Gardner 
& Bartlett 1994). According to Turner and Magan 
(2004), signal conditioning techniques such as 
baseline correction, drift compensation, and noise 
filtering are crucial for preserving steady 
performance during long operating times.  
An significant development for grain pest 
monitoring applications is the incorporation of 
wireless communication capabilities, which allow 
for connection with larger farm management 
systems and remote monitoring of different 
storage sites (Wilson & Baietto 2009). Wireless e-
nose systems for grain storage monitoring have 
been successfully used in recent studies. These 
systems' data transfer capabilities enable 
centralised analysis and automatic warning 
generating when pest detection criteria are 
surpassed (Loutfi et al., 2015). 

MAJOR GRAIN STORAGE PESTS AND THEIR 
VOLATILE SIGNATURES 

Developing efficient electronic nose detection 
systems requires a thorough understanding of the 
biology, behaviour, and volatile emission 
characteristics of the main pests that affect grain 
storage. According to Phillips and Throne (2010), 
the most economically important stored grain 
pests have unique feeding habits, growth patterns, 
and metabolic processes that result in distinctive 
volatile organic compound signatures that may be 

identified by sensor systems that are properly 
built.  
The most damaging internal feeders in stored 
grain ecosystems are Sitophilus species, which 
include the granary weevil (S. granarius), maize 
weevil (S. zeamais), and rice weevil (S. oryzae). 
The larvae of these beetles consume the 
endosperm and only the outer hull structure 
remains after completing their whole 
developmental cycle within individual grain kernels 
(Hagstrum & Subramanyam 2006). Due to lipid 
oxidation in damaged grain, Sitophilus species' 
feeding activity results in unique volatile patterns, 
such as increased concentrations of 1-octen-3-ol, 
2-methyl-1-butanol, and other aldehydes 
(Germinara et al., 2007). More than 20 volatile 
chemicals were found to be directly linked to 
Sitophilus infestations by Phillips et al. (1993). 
Some of these compounds were found in grain 
headspace at concentrations as low as 0.1 parts 
per million.  
There is a considerable correlation between the 
developmental phases and population density of 
insects and the temporal pattern of volatile 
emission from Sitophilus infestations. Due to the 
abrupt exposure of larval feeding damage and the 
start of fresh feeding activity by emerged adults, 
adult emergence from grain kernels causes 
distinctive increases in volatile emissions (White et 
al., 1995). In order to identify early-stage 
infestations before serious grain damage occurs, 
electronic nose systems intended for Sitophilus 
detection must take these temporal fluctuations 
into consideration while retaining sensitivity 
(Paolesse et al., 2006). 
Another important internal feeder with unique 
volatile emission traits is the smaller grain borer, 
Rhyzopertha dominica. In contrast to Sitophilus 
species, adults of R. dominica may burrow widely 
into grain masses, forming intricate networks of 
galleries and chambers, and can start infestations 
in intact grain kernels (Hagstrum & Subramanyam 
2006). Because R. dominica prefers the germ 
region of grain kernels, their feeding activity 
results in increased quantities of terpene 
chemicals, namely limonene and pinene 
derivatives, as well as oxidised fatty acid products 
(Chambers et al., 2013).  
Based on the relative concentrations of certain 
volatile markers, research has shown that 
infestations of R. dominica and Sitophilus may be 
differentiated from one another. Terpene-to-
aldehyde ratios are a reliable way to discriminate 
between these pest groups (Germinara et al., 
2007). Since these pests may need different 
control methods and have varying economic effect 
profiles, the ability to distinguish between various 
internal feeding species is especially crucial for 
grain storage management (Turner & Magan 
2004).  
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The most important external feeding pests in 
stored grain systems are Tribolium species, which 
include the crimson flour beetle (T. castaneum) 
and the confused flour beetle (T. confusum). 
Instead of piercing intact grain kernels, these 
beetles feed on broken grain kernels, flour 
particles, and grain dust. They produce volatile 
fingerprints that indicate their preferred food 
sources and habitat needs (Phillips & Throne 
2010). Elevated levels of benzaldehyde, 2-methyl-
2-butenal, and other ketones generated by the 
oxidation of damaged grain components and the 
metabolism of flour particles are indicative of 
Tribolium infestations (White et al., 1990). 
Because of their different biological niche and 
feeding habits, Tribolium infestations create 
volatile emission patterns that are significantly 
different from those of internal feeders. According 
to research, Tribolium infestations often result in 
lower amounts of aliphatic alcohols and greater 
concentrations of aromatic chemicals than 
Sitophilus infestations, offering distinct criteria for 
differentiation in electronic nose applications 
(Germinara et al., 2007). Furthermore, since 
Tribolium prefers damp, damaged grain conditions 
that encourage the establishment of mould, 
infestations may be linked to higher levels of 
fungal-derived volatiles (Sinha & Muir 1973).  
The sawtoothed grain beetle, Oryzaephilus 
surinamensis, is a significant external feeder with 
distinct volatile emission traits associated with its 
feeding habits and preferred environment. High 
levels of esters and organic acids are among the 
volatile signatures produced by this species, which 
mostly consumes broken kernels and processed 
grain products (Hagstrum & Subramanyam 2006). 
Concentrations of 2-methyl-1-propanol and ethyl 
acetate have been shown to positively correlate 
with pest population density, making them 
especially distinctive volatile markers for O. 
surinamensis infestations (Phillips et al., 1993).  
Their comparable eating substrates and 
overlapping habitat requirements must be carefully 
taken into account when differentiating between 
external feeding species. However, studies have 
shown that, when examined with the right 
multivariate statistical techniques, species-specific 
metabolites and unique ratios of common volatile 
chemicals may provide trustworthy identification 
criteria (Wilson & Baietto 2011). For thorough 
grain storage monitoring, the creation of electronic 
nose systems that can distinguish between many 
external feeder species is a significant 
breakthrough (Loutfi et al., 2015).  
Grain pest infestations' volatile emission patterns 
are greatly influenced by environmental 
influences, which makes it difficult to get reliable 
detection results under various storage 
circumstances. Both pest metabolism and the 
equilibrium concentrations of volatile compounds 

are impacted by temperature; higher temperatures 
tend to increase emission rates but may also 
change the relative proportions of various volatile 
chemicals (Chambers et al., 2013). The best e-
nose performance requires temperature 
compensation algorithms or controlled measuring 
circumstances since studies have shown that 
temperature differences of 10-15°C may result in 
2-3 fold increases in volatile emission rates 
(Paolesse et al., 2006). 
The effects of humidity on volatile emissions are 
multifaceted, affecting the distribution of volatile 
chemicals between the grain and air phases as 
well as the degree of insect activity. Although high 
humidity levels may increase volatile emission 
rates by promoting insect feeding and 
reproduction, they can also have an adverse effect 
on sensor performance and the stability of volatile 
compounds (Wilson & Baietto 2009). According to 
research, the best detection results are usually 
obtained at grain moisture concentrations of 12–
14%, which balances pest activity with 
advantageous volatile emission properties (Turner 
& Magan 2004). 

PATTERN RECOGNITION AND DATA 
ANALYSIS METHODS 

For electronic nose technology to be successfully 
used in grain pest detection applications, strong 
pattern recognition algorithms must be developed.  
Sensor arrays provide complex, multi-dimensional 
data that calls for advanced analysis techniques 
that can reliably extract relevant information from a 
variety of ambient factors and sample properties 
(Loutfi et al., 2015). 
 The majority of e-nose data analysis applications 
in grain pest detection have been built on Principal 
Component Analysis (PCA), which offers 
dimensionality reduction and visualisation 
capabilities that facilitate preliminary evaluation of 
data structure and sample clustering patterns 
(Jolliffe, 2002).  According to Balasubramanian et 
al. (2007), research applications have consistently 
shown that PCA can effectively reveal clustering 
patterns corresponding to various pest species, 
infestation levels, and grain conditions. Typically, 
3-5 principal components are needed to explain 
80-90% of the total variance in sensor array data. 
The link between principle component loadings 
and recognised volatile emission patterns must be 
carefully taken into account when interpreting PCA 
findings for grain pest sprays.  According to 
research, the first main component often reflects 
the intensity of total volatile emissions, which is 
correlated with the degree of infestation and grain 
damage (Paolesse et al., 2006).  Variations in 
volatile emission patterns related to variances in 
pest species, developmental phases, and 
environmental conditions are usually captured by 
subsequent components (Wilson & Baietto 2011). 
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 Grain pest detection classification tasks have 
shown great success using Linear Discriminant 
Analysis (LDA), which provides the capacity to 
determine the best linear combinations of sensor 
variables for maximising discriminating between 
preset classes (Fisher, 1936).  When used to 
identify grain pests, LDA has been shown to have 
classification accuracy of 85–95% for 
differentiating between pest species in a controlled 
laboratory setting (Germinara et al., 2007).  
According to Turner and Magan (2004), the 
method is especially useful for creating 
straightforward, understandable categorisation 
criteria that are easy to include into automated 
monitoring systems. 
 The creation of relevant classification categories 
and the selection of suitable features from sensor 
array data are crucial for the success of LDA 
applications.  Baseline correction, normalisation, 
and feature selection are examples of 
preprocessing methods that have been shown to 
dramatically enhance LDA performance for grain 
pest detection applications (Chambers et al., 
2013).  Because volatile emission patterns are 
dynamic, time-based characteristics such 
response maxima, areas under response curves, 
and response kinetic parameters have performed 
better than single-point measurements (Wilson & 
Baietto 2009). 
 Because of its capacity to manage correlated 
variables and provide strong results with little 
training data, partial least squares discriminant 
analysis, or PLS-DA, has drawn more and more 
interest for grain pest detection applications (Wold 
et al., 2001).  In grain pest identification, when 
many sensors react to overlapping sets of 
metabolites, PLS-DA is especially useful in sensor 
arrays because individual sensors may show 
linked responses to comparable volatile chemicals 
(Paolesse et al., 2006). 
 When compared to conventional LDA techniques, 
research applications of PLS-DA to grain pest 
identification have shown better performance, 
especially when handling complex datasets with 
many pest species and variable environmental 
circumstances (Balasubramanian et al., 2007).  
For creating reliable classification models that 
continue to function well across various grain 
kinds and storage circumstances, PLS-DA's 
capacity to find latent variables that optimise 
covariance between sensor responses and 
classification categories has proved useful (Loutfi 
et al., 2015). 
 Because they can represent intricate, non-linear 
interactions between sensor responses and pest 
traits, artificial neural networks (ANN) have shown 
remarkable potential for grain pest detection 
applications (Haykin, 1999).  Based on volatile 
emission patterns, multi-layer perceptron networks 
have been effectively used to predict the severity 

of infestations and differentiate between many 
pest species at once (Wilson & Baietto 2011).  
Studies have shown that when trained on 
extensive datasets that include a variety of pest 
species, grain types, and environmental 
circumstances, ANN techniques may attain 
classification accuracies of above 95% (Chambers 
et al., 2013). 
In order to prevent overfitting and preserve 
generalisation performance, network topology, 
training procedures, and validation techniques 
must all be carefully considered when optimising 
ANN designs for grain pest detection (Turner & 
Magan 2004).  According to research, networks 
with 1-2 hidden layers and 5–15 neurones often 
perform best on tasks involving the classification 
of grain pests, striking a balance between the 
complexity of the model and the amount of training 
data needed (Paolesse et al., 2006).  To make 
sure that produced models would function 
consistently on fresh samples that were not used 
in the training process, cross-validation techniques 
and independent test datasets are crucial 
(Balasubramanian et al., 2007). 
Because of their superior generalisation 
capabilities and capacity to manage non-linearly 
separable datasets via kernel modifications, 
Support Vector Machine (SVM) algorithms have 
become very effective instruments for grain pest 
detection applications (Vapnik, 1995).  With 
claimed accuracies continuously over 90% 
throughout several research investigations, SVM 
techniques have proven very successful for binary 
classification tasks like differentiating between 
infected and uninfested grain samples (Wilson & 
Baietto 2009). 
The predicted complexity of decision boundaries 
between classes must be taken into account when 
choosing a kernel for SVM applications in grain 
pest detection.  Because of the non-linear nature 
of the correlations between sensor responses and 
pest features, studies have shown that radial basis 
function (RBF) kernels often perform better than 
linear kernels for grain pest applications (Loutfi et 
al., 2015).  To guarantee reliable performance 
across various datasets and operational situations, 
kernel parameter optimisation necessitates 
meticulous validation (Chambers et al., 2013). 
 Because of its capacity to manage huge datasets 
with a variety of variable types and maintain 
reliable performance even in the face of noise and 
outliers, Random Forest algorithms have drawn 
interest for use in grain pest detection applications 
(Breiman, 2001).  These ensemble approaches 
include estimations of prediction confidence and 
enhance classification accuracy by combining 
predictions from many decision trees (Turner & 
Magan 2004).  According to Wilson and Baietto 
(2011), research applications have shown that 
Random Forest techniques are capable of 
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handling the multi-dimensional, complicated data 
that is characteristic of grain pest detection while 
producing findings that are easy to understand on 
the significance of various sensor variables. 
Given that volatile emission patterns fluctuate 
dynamically over time as infestations grow and 
environmental factors change, the use of temporal 
pattern identification is a significant improvement 
for grain pest monitoring applications (Paolesse et 
al., 2006).  Autoregressive models and dynamic 
time warping are two-time series analysis 
techniques that have been effectively used to 
identify temporal patterns in sensor responses that 
correlate to developmental cycles and pest 
population dynamics (Chambers et al., 2013). 
 Recurrent neural networks (RNN) and long short-
term memory (LSTM) networks are two machine 
learning techniques for temporal pattern 
identification that may simulate sequential 
relationships in sensor data across time 
(Hochreiter & Schmidhuber 1997).  These 
methods are especially promising for predictive 
applications, as e-nose systems may be able to 
anticipate the growth of pest populations and 
determine the best time to intervene (Loutfi et al., 
2015). 

FIELD APPLICATIONS AND PERFORMANCE 
EVALUATION 

Both great promise and major obstacles that need 
to be overcome for effective commercial 
implementation have been identified by the 
translation of laboratory-based electronic nose 
research into useful field applications for grain 
pest identification. Important insights into the 
performance traits and constraints of e-nose 
technology under practical working situations may 
be gained from field assessment tests carried out 
in real grain storage facilities (Wilson & Baietto 
2011).  
The viability of e-nose technology for regular pest 
monitoring applications has been shown by 
extensive assessment tests carried out in 
commercial grain elevators. Comparing a 
prototype e-nose system against conventional 
inspection techniques, Chambers et al. (2013) 
found that the system achieved 87-92% pest 
detection accuracy over the course of a complete 
storage season in wheat silos. According to the 
research, e-nose devices provide major benefits 
for preventative pest control tactics as they may 
identify early infestations two to four weeks before 
visual inspection techniques.  
Depending on operating settings, grain kinds, and 
climatic circumstances, field-deployed e-nose 
systems exhibit a wide range of performance 
characteristics. According to research, detection 
accuracy normally falls between 80 and 95 
percent under ideal circumstances, but it may drop 
to 70 to 85 percent in highly changeable 

environments or when dealing with mixed pest 
populations (Paolesse et al., 2006). One of the 
biggest problems is temperature changes, which 
may have an impact on sensor performance and 
volatile emission patterns from grain samples due 
to daily temperature variations in storage facilities 
(Turner & Magan 2004). 
Because grain storage facilities often encounter 
large humidity changes as a result of grain 
moisture migration, ventilation activities, and 
seasonal weather patterns, the impacts of 
humidity on field performance have proved 
especially difficult to manage (Balasubramanian et 
al., 2007). According to research, differences in 
relative humidity of 20–30% may cause sensor 
response variations comparable to minor pest 
infestations; thus, in order to maintain dependable 
detection performance, advanced compensation 
algorithms or environmental control techniques are 
needed (Wilson & Baietto 2009).  
One crucial area of continuing study is the 
development of calibrating techniques for field 
applications. Due to variations in grain types, 
storage settings, and operating protocols, 
laboratory calibration models often lose accuracy 
when used in field settings (Chambers et al., 
2013). Performance maintenance over long 
deployment durations has been shown to be 
possible using adaptive calibration techniques that 
continually update model parameters based on 
field observations (Loutfi et al., 2015).  
Numerous performance criteria have been used in 
comparative assessment studies to compare e-
nose's performance to that of well-established pest 
detection techniques. Studies have repeatedly 
shown that e-nose systems are faster and more 
automated than traditional techniques; full 
analyses usually take 15 to 30 minutes, whereas 
conventional procedures take hours or days 
(Paolesse et al., 2006). Nevertheless, e-nose 
systems still have greater initial capital costs than 
conventional techniques, necessitating a thorough 
economic study to support deployment in certain 
applications (Turner & Magan 2004).  
There are significant performance trade-offs 
between e-nose and conventional detection 
techniques, according to sensitivity comparisons. 
E-nose systems could be less specific than 
pheromone traps for detecting specific pest 
species, even while they might be able to identify 
the presence of pests at lower population densities 
than visual examination techniques (Wilson & 
Baietto 2011). According to research, the best 
pest monitoring plans could include conventional 
techniques for population assessment and species 
confirmation with e-nose technology for early 
detection (Chambers et al., 2013).  
Sensor drift and stability have been shown to be 
important limitations limiting the practical value of 
e-nose systems for grain pest monitoring in long-
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term performance assessment studies. Significant 
variations in sensor baseline responses across 6-
month deployment periods were reported by 
Balasubramanian et al. (2007), necessitating 
periodic recalibration to maintain adequate 
detection performance. Research on self-
calibrating sensor systems and drift correction 
algorithms is ongoing with the goal of enhancing 
long-term dependability (Loutfi et al., 2015).  
A number of variables, such as system costs, 
operational savings, and the value of better pest 
management results, determine whether e-nose 
technology for grain pest detection is economically 
viable. When pest pressure is moderate to high 
and early detection capabilities allow for reduced 
pesticide usage or prevent significant grain losses, 
e-nose systems may yield positive returns on 
investment, according to cost-benefit analyses 
done for commercial grain storage operations 
(Turner & Magan 2004).  
Adoption rates for e-nose technology have been 
shown to be significantly impacted by integration 
issues with current grain storage systems. 
According to research, sampling tactics, data 
management systems, and staff training needs 
must all be carefully considered for effective 
deployment (Wilson & Baietto, 2009). Grain 
storage employees with little technical experience 
have shown a strong preference for automatic 
interpretation systems and user-friendly interfaces 
(Paolesse et al., 2006).  
Important information about the accuracy and 
dependability of the system has been gleaned 
from validation experiments that contrast the 
findings of e-nose detection with independently 
verified insect infestations. System performance 
may vary greatly based on local circumstances, 
grain types, and insect populations, according to 
multi-site validation studies carried out across 
several geographic locations and grain storage 
facilities (Chambers et al., 2013). To guarantee 
consistent performance across many installations, 
standardising measuring processes and 
calibration techniques is a constant problem 
(Wilson & Baietto 2011). 
When permanent installation solutions are 
impractical or not financially viable, the advent of 
portable e-nose devices has created new avenues 
for grain pest monitoring. Handheld e-nose 
devices have been shown to provide dependable 
pest detection capabilities for quality control 
applications in grain processing plants, farm-level 
grain bins, and smaller storage facilities (Turner & 
Magan, 2004). In contrast to laboratory-based 
equipment, portable devices usually have lower 
sensitivity and may need more frequent calibration 
to maintain satisfactory performance (Loutfi et al., 
2015). 

 

CHALLENGES AND LIMITATIONS 

Electronic nose technology has a lot of promise for 
detecting grain pests, but its broad commercial 
adoption is still hampered by a number of basic 
issues and restrictions.  To fully realise the 
promise of e-nose technology for grain storage 
applications, these limitations—which span 
technological, economic, and practical domains—
must be overcome via ongoing research and 
development initiatives (Wilson & Baietto 2011). 
 The main technological obstacles for grain pest 
detection applications are sensor selectivity and 
specificity.  Grain degradation products, fungal 
metabolites, residual pesticides, and 
environmental pollutants are just a few of the 
many possible sources of volatile organic 
compounds that may be found in the complex 
chemical environment of grain storage facilities 
(Chambers et al., 2013).  These interfering 
substances have been shown to generate sensor 
responses that substantially overlap with pest-
related signals, which may result in false-positive 
detections or obscure real pest signals (Paolesse 
et al., 2006). 
 Sensor materials and operation conditions must 
be carefully optimised to maximise 
responsiveness to target compounds while 
minimising interference from non-target volatiles in 
order to build sensor arrays with improved 
selectivity.  In order to improve discriminating 
capabilities, research has concentrated on 
creating chemically selective sensor coatings and 
operational procedures (Turner & Magan 2004).  
Complete selectivity is seldom possible due to the 
inherent cross-reactivity of most sensor 
technologies; instead, extensive pattern 
recognition algorithms are needed to extract useful 
information from intricate sensor response 
patterns (Gardner & Bartlett 1994). 
 Another major obstacle to the field use of e-nose 
technology in grain storage facilities is 
environmental stability.  Variations in temperature 
and humidity may have an impact on volatile 
emission patterns and sensor performance, which 
might jeopardise the accuracy and dependability 
of detection (Wilson & Baietto 2009).  According to 
research, sensor response changes comparable 
to mild pest infestations may result from 
temperature swings of 5–10°C, which are typical in 
many storage facilities (Balasubramanian et al., 
2007). 
 Grain storage settings can undergo high humidity 
swings owing to grain moisture migration and 
ventilation activities, and many sensor 
technologies demonstrate strong cross-sensitivity 
to water vapour, making humidity effects 
especially troublesome (Chambers et al., 2013).  
Although there is ongoing research on moisture-
resistant sensor designs and humidity 
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compensation algorithms, total removal of 
humidity effects is still difficult (Loutfi et al., 2015). 
 Long-term stability problems and sensor drift have 
become important constraints for applications 
involving continuous monitoring.  Sensor baseline 
responses and sensitivity have been shown to 
fluctuate significantly over weeks to months, 
necessitating regular recalibration to maintain 
acceptable performance (Turner & Magan 2004).  
The ageing of sensitive materials, contamination 
of sensor surfaces, and slow modifications to 
sensor electronics are the factors that cause 
sensor drift (Wilson & Baietto 2011). 
 Both software and hardware technologies have 
been the main focus of drift compensating strategy 
development.  Software solutions include baseline 
correction algorithms and adaptive calibration 
models, while hardware solutions include 
reference gas systems, sensor replacement 
procedures, and self-cleaning sensor designs 
(Paolesse et al., 2006).  Effective drift correction is 
still difficult to achieve, however, and often 
necessitates large increases in system complexity 
and expense (Chambers et al., 2013). 
 Problems with repeatability and standardisation 
have made it difficult to compare findings from 
various research teams and create universal 
calibration models.  Setting comparable 
performance standards is challenging due to 
variations in sensor array designs, measurement 
settings, sample preparation procedures, and data 
processing techniques (Wilson & Baietto 2009).  
One major obstacle to the maturity of technology 
is the lack of standardised reference materials and 
calibration procedures for grain pest detection 
applications (Turner & Magan 2004). 
 Research organisations, technology suppliers, 
and end users would need to work together to 
create consensus procedures for system design, 
calibration, and performance assessment in order 
to set industry standards for e-nose applications in 
grain pest detection (Loutfi et al., 2015).  
Technology transfer and more insightful 
comparisons of various methods and systems 
would be made possible by such standards 
(Balasubramanian et al., 2007). 
 High initial capital expenditures, continuous 
maintenance needs, and the demand for technical 
know-how to run and maintain complex electronic 
systems are some of the financial obstacles to 
adoption (Chambers et al., 2013).  According to 
research, conventional pest monitoring equipment 
only costs a few hundred dollars, but 
contemporary e-nose systems often need initial 
expenditures of $10,000 to $50,000, depending on 
system complexity and capabilities (Wilson & 
Baietto 2011). 
 The value of better pest control results and 
operational savings are crucial components of the 
economic case for e-nose technology.  The 

advantages of early detection and lower pesticide 
use may make the investment in e-nose 
technology worthwhile for large commercial grain 
storage facilities with strong pest pressure (Turner 
& Magan 2004).  Smaller businesses, however, 
would find it challenging to justify the expenses 
unless system prices drop sharply or shared 
monitoring services are made accessible 
(Paolesse et al., 2006). 
Practical obstacles to the broad use of e-nose 
technology include the need for training and 
experience.  According to Loutfi et al. (2015), 
many grain storage facilities may lack the 
technical expertise needed to operate and 
maintain complex sensor systems.  Studies have 
highlighted the significance of creating automatic 
interpretation systems and user-friendly interfaces 
that reduce the technical know-how needed for 
everyday operations (Chambers et al., 2013). 
Additional real-world difficulties arise when 
integrating e-nose technology with current grain 
storage systems.  Data management systems 
must interface with current record-keeping and 
decision-making processes, and sampling 
methodologies must be consistent with standard 
handling practices (Wilson & Baietto 2009).  Some 
of these integration issues have started to be 
addressed by the development of cloud-based 
data analysis tools and wireless communication 
capabilities (Turner & Magan 2004). 

FUTURE DIRECTIONS AND CONCLUSIONS 

A number of new research avenues and technical 
developments that solve present constraints and 
broaden application possibilities will be 
advantageous to the future development of 
electronic nose technology for grain pest 
monitoring and detection.  Together, these 
advancements in sensor technology, data 
processing techniques, system integration, and 
economic feasibility suggest that e-nose 
technology will be used more widely in grain 
storage operations (Loutfi et al., 2015). 
 Developments in materials science and 
nanotechnology are propelling the creation of 
next-generation sensor devices with improved 
stability, selectivity, and sensitivity.  Carbon 
nanotubes, graphene, and other cutting-edge 
materials have been used to create 
nanostructured metal oxide sensors, which have 
shown improved performance characteristics such 
as lower operating temperatures, increased 
sensitivity, and better resistance to environmental 
interference (Wilson & Baietto 2011).  The 
development of highly selective sensors that are 
suited to certain volatile chemicals linked to 
specific pest species is possible with research on 
molecularly imprinted polymer sensors (Chambers 
et al., 2013). 
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 One key approach to enhancing system 
performance and dependability is the integration of 
many sensor technologies into a single e-nose 
platform.  When compared to single-technology 
methods, hybrid systems that combine 
complementary sensor technologies—like 
conducting polymer sensors with MOS—have 
shown improved discriminating capabilities (Turner 
& Magan 2004).  In addition to offering inherent 
redundancy for increased dependability, sensor 
fusion algorithms that properly integrate data from 
many sensor types have the potential to greatly 
increase detection accuracy (Paolesse et al., 
2006). 
 Advances in machine learning and artificial 
intelligence are opening up new avenues for 
enhancing data interpretation and pattern 
detection skills.  For complicated pattern 
identification tasks including temporal and spatial 
patterns in sensor data, deep learning techniques 
such as convolutional neural networks and 
recurrent neural networks have shown some 
degree of success (Balasubramanian et al., 2007).  
With the use of transfer learning approaches, it 
may be possible to create reliable models that 
need little further training data to be adjusted to 
new grain varieties, insect species, or 
environmental circumstances (Loutfi et al., 2015). 
Through networked sensor systems that allow for 
complete facility monitoring and predictive 
analytics, the combination of e-nose technology 
and Internet of Things (IoT) capabilities promises 
to transform grain storage monitoring (Wilson & 
Baietto 2009).  By combining data from many 
installations, cloud-based data analysis tools may 
enable ongoing model improvement while offering 
advanced pattern recognition capabilities 
(Chambers et al., 2013). 
 Expanding the availability of e-nose technology to 
smaller grain storage enterprises requires both 
cost reduction and miniaturisation.  Developments 
in semiconductor manufacturing and 
microfabrication are making it possible to create 
chip-scale sensor arrays, which have the potential 
to significantly lower system costs while 
preserving or enhancing performance attributes 
(Turner & Magan 2004).  Small-scale grain 
storage businesses may be able to afford the 
portable monitoring capabilities that the 
development of smartphone-based e-nose 
systems might provide (Paolesse et al., 2006). 
 Research organisations, technology developers, 
and industry stakeholders must work together to 
standardise e-nose technology for grain pest 
detection applications.  It would be easier to 
transfer technology and make meaningful 
comparisons across various systems and 
methodologies if reference materials, calibration 
procedures, and performance assessment criteria 
were established (Wilson & Baietto 2011).  Global 

standards that make it easier for technology to be 
adopted in various geographical locations and 
regulatory contexts might be established via 
international cooperation through groups like the 
International Union of Food Science and 
Technology (Loutfi et al., 2015). 
 Although they are yet mostly unexplored, 
regulatory issues pertaining to e-nose technology 
in grain storage applications will become more 
significant as the technology gets closer to 
commercial maturity.  Agricultural regulatory 
bodies may need to validate and approve the 
integration of e-nose monitoring data with pest 
control decision-making systems (Chambers et al., 
2013).  Grain storage specialists may become 
more confident in e-nose technology and 
guarantee consistent performance with the 
creation of operator certification programs and 
quality assurance procedures (Turner & Magan 
2004). 
For e-nose technology to be successfully used in 
grain storage operations, training and educational 
initiatives will be crucial.  The need of creating 
thorough training materials and support systems to 
help grain storage staff run and maintain e-nose 
systems has been emphasised by research 
(Wilson & Baietto 2009).  Collaborations between 
agricultural extension agencies and technology 
developers might help disseminate knowledge and 
provide system users continuous technical 
assistance (Paolesse et al., 2006). 
There is a significant chance to raise system value 
and adoption rates by extending e-nose 
applications beyond simple insect detection to 
include thorough grain quality monitoring.  
According to research, e-nose systems are 
capable of detecting fungal contamination, grain 
degradation, insect infestations, and other quality 
indicators that impact grain safety and value 
(Chambers et al., 2013).  Through increased 
functionality, multi-parameter monitoring 
capabilities might provide a thorough evaluation of 
grain quality while defending greater system costs 
(Loutfi et al., 2015). 
To sum up, electronic nose technology for grain 
pest detection has shown a great deal of promise 
for enhancing the automation, speed, and 
accuracy of pest monitoring in grain storage 
facilities. The scientific basis for e-nose 
applications has been established by current 
research, which has also shown proof-of-concept 
performance in both lab and field settings.  
However, before broad commercial acceptance 
can be accomplished, a number of practical and 
technological issues need to be resolved. 
Enhancing selectivity and specificity for target pest 
species, developing efficient drift compensation 
strategies and improving sensor stability, 
establishing standardised protocols for system 
calibration and performance evaluation, lowering 
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system costs through manufacturing scale-up and 
technological advancements, and creating 
extensive training and support systems for end 
users are among the most important research 
priorities (Wilson & Baietto 2011). 
It will involve ongoing cooperation between sensor 
technology developers, agricultural researchers, 
and stakeholders in the grain storage sector to 
successfully solve these issues.  Continued 
investment in R&D is justified by the potential 
advantages of e-nose technology for enhancing 
food security via improved pest control 
capabilities.  Electronic nose technology has the 
potential to become a standard part of 
contemporary grain storage operations with the 
right technological advancements and the 
development of supporting infrastructure. This 
would greatly aid international efforts to improve 
food security and minimise post-harvest food 
losses (Chambers et al., 2013). 
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